Abstract
The slip boundary condition for nanoflows is a key component of nanohydrodynamics theory, and can play a significant role in the design and fabrication of nanofluidic devices. In this review, focused on the slip boundary conditions for nanoconfined liquid flows, we firstly summarize some basic concepts about slip length including its definition and categories. Then, the effects of different interfacial properties on slip length are analyzed. On strong hydrophilic surfaces, a negative slip length exists and varies with the external driving force. In addition, depending on whether there is a true slip length, the amplitude of surface roughness has different influences on the effective slip length. The composition of surface textures, including isotropic and anisotropic textures, can also affect the effective slip length. Finally, potential applications of nanofluidics with a tunable slip length are discussed and future directions related to slip boundary conditions for nanoscale flow systems are addressed.
Funder
National Natural Science Foundation of China
Shanxi University
Northeast Petroleum University
Education Department of Shaanxi Province
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献