Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

Author:

Preischl Christian,Le Linh Hoang,Bilgilisoy ElifORCID,Gölzhäuser ArminORCID,Marbach Hubertus

Abstract

Focused electron beam-induced processing is a versatile method for the fabrication of metallic nanostructures with arbitrary shape, in particular, on top of two-dimensional (2D) organic materials, such as self-assembled monolayers (SAMs). Two methods, namely electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) are studied with the precursors Fe(CO)5 and Co(CO)3NO on SAMs of 1,1′,4′,1′′-terphenyl-4-thiol (TPT). For Co(CO)3NO only EBID leads to deposits consisting of cobalt oxide. In the case of Fe(CO)5 EBID and EBISA yield deposits consisting of iron nanocrystals with high purity. Remarkably, the EBISA process exhibits a strong time dependence, which is analyzed in detail for different electron doses. This time dependence is a new phenomenon, which, to the best of our knowledge, was not reported before. The electron-induced cross-linking of the SAM caused by the cleavage of C–H bonds and the subsequent formation of new C–C bonds between neighboring molecules also seems to play a crucial role in the EBISA process. Previous studies showed that iron nanostructures fabricated on top of a cross-linked SAM on Au/mica can be transferred to solid substrates and grids without any changes, aside from oxidation. Here we demonstrate that iron as well as cobalt oxide structures on top of a cross-linked SAM on Ag/mica do change more significantly. The Fe(NO3)3 solution used for etching of the Ag layer also dissolves the cobalt oxide structures and causes dissolution and reduction of the iron structures. These results demonstrate that the fabrication of hybrids of metallic nanostructures onto organic 2D materials is an intrinsically complex procedure. The interactions among the metallic deposits, the substrate for the growth of the SAM, and the associated etching/dissolving agent need to be considered and further studied.

Funder

Deutsche Forschungsgemeinschaft

European Union’s Horizon 2020

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3