New standards for collecting and fitting steady state kinetic data

Author:

Johnson Kenneth AORCID

Abstract

The Michaelis–Menten equation is usually expressed in terms of kcat and Km values: v = kcat[S]/(Km + [S]). However, it is impossible to interpret Km in the absence of additional information, while the ratio of kcat/Km provides a measure of enzyme specificity and is proportional to enzyme efficiency and proficiency. Moreover, kcat/Km provides a lower limit on the second order rate constant for substrate binding. For these reasons it is better to redefine the Michaelis–Menten equation in terms of kcat and kcat/Km values: v = kSP[S]/(1 + kSP[S]/kcat), where the specificity constant, kSP = kcat/Km. In this short review, the rationale for this assertion is explained and it is shown that more accurate measurements of kcat/Km can be derived directly using the modified form of the Michaelis–Menten equation rather than calculated from the ratio of kcat and Km values measured separately. Even greater accuracy is achieved with fitting the raw data directly by numerical integration of the rate equations rather than using analytically derived equations. The importance of fitting to derive kcat and kcat/Km is illustrated by considering the role of conformational changes in enzyme specificity where kcat and kcat/Km can reflect different steps in the pathway. This highlights the pitfalls in attempting to interpret Km, which is best understood as the ratio of kcat divided by kcat/Km.

Publisher

Beilstein Institut

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3