The LANCA three-component reaction to highly substituted β-ketoenamides – versatile intermediates for the synthesis of functionalized pyridine, pyrimidine, oxazole and quinoxaline derivatives

Author:

Lechel Tilman,Kumar Roopender,Bera Mrinal K,Zimmer Reinhold,Reissig Hans-UlrichORCID

Abstract

The LANCA three-component reaction of lithiated alkoxyallenes LA, nitriles N and carboxylic acids CA leads to β-ketoenamides KE in good to excellent yields. The scope of this reaction is very broad and almost all types of nitriles and carboxylic acids have successfully been used. The alkoxy group introduced via the allene component is also variable and hence the subsequent transformation of this substituent into a hydroxy group can be performed under different conditions. Enantiopure nitriles or carboxylic acids can also be employed leading to chiral KE with high enantiopurity and dinitriles or dicarboxylic acids also lead to the expected bis-β-ketoenamides. β-Ketoenamides incorporate a unique combination of functional groups and hence a manifold of subsequent reactions to highly substituted heterocyclic compounds is possible. An intramolecular aldol-type condensation reaction efficiently furnishes pyridin-4-ols PY that can be further modified by palladium-catalyzed reactions, e.g., to specifically substituted furopyridine derivatives. Condensations of β-ketoenamides with ammonium salts or with hydroxylamine hydrochloride afford pyrimidines PM or pyrimidine N-oxides PO with a highly flexible substitution pattern in good yields. The functional groups of these heterocycles also allow a variety of subsequent reactions to various pyrimidine derivatives. On the other hand, acid-labile alkoxy substituents such as a 2-(trimethylsilyl)ethoxy group are required for the conversion of β-ketoenamides into 5-acetyl-substituted oxazoles OX, again compounds with high potential for subsequent functional group transformations. For acid labile β-ketoenamides bearing bulky substituents the acid treatment leads to acylamido-substituted 1,2-diketones DK that could be converted into quinoxalines QU. All classes of heterocycles accessed through the key β-ketoenamides show a unique substitution pattern – not easily accomplishable by alternative methods – and therefore many subsequent reactions are possible.

Publisher

Beilstein Institut

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3