Abstract
Hydrogels are a special class of crosslinked hydrophilic polymers with a high water content through their porous structures. Post-modifications of hydrogels propose an attractive platform so that a variety of fresh functions, which are not arising from initial monomers, could be accessible on a parental network. Photoinduced post-modification of hydrogels by embedding semiconductor nanosheets would be of high interest and novelty. Here, a metal-free semiconductor graphitic carbon nitride (g-CN)-embedded hydrogel as an initial network was synthesized via redox-couple initiation under dark conditions. Post-photomodification of so-formed hydrogel, thanks to the photoactivity of the embedded g-CN nanosheets, was exemplified in two scenarios. The synthesis of ‘hydrophobic hydrogel’ is reported and its application in delayed cation delivery was investigated. Furthermore, pores of the initial hydrogel were modified by the formation of a secondary polymer network. Such a facile and straightforward synthetic protocol to manufacture functional soft materials will be of high interest in near future by the means of catalysis and agricultural delivery.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Photocatalyst-Incorporated Cross-Linked Porous Polymer Networks;Industrial & Engineering Chemistry Research;2022-07-20
2. Multicompartment Hydrogels;Macromolecular Rapid Communications;2022-02-18
3. Light-Driven Integration of Graphitic Carbon Nitride into Polymer Materials;The 2nd International Online Conference on Polymer Science—Polymers and Nanotechnology for Industry 4.0;2021-11-05