Friedel–Crafts-type reaction of pyrene with diethyl 1-(isothiocyanato)alkylphosphonates. Efficient synthesis of highly fluorescent diethyl 1-(pyrene-1-carboxamido)alkylphosphonates and 1-(pyrene-1-carboxamido)methylphosphonic acid

Author:

Wrona-Piotrowicz Anna,Zakrzewski Janusz,Gajda Anna,Gajda Tadeusz,Makal Anna,Brosseau Arnaud,Métivier Rémi

Abstract

Friedel–Crafts-type reaction of pyrene with diethyl 1-(isothiocyanato)alkylphosphonates promoted by trifluoromethanosulfonic acid afforded diethyl 1-(pyrene-1-carbothioamido)alkylphosphonates in 83–94% yield. These compounds were transformed, in 87–94% yield, into the corresponding diethyl 1-(pyrene-1-carboxamido)alkylphosphonates by treatment with Oxone®. 1-(Pyrene-1-carboxamido)methylphosphonic acid was obtained in a 87% yield by treating the corresponding diethyl phosphonate with Me3Si-Br in methanol. All of the synthesized amidophosphonates were emissive in solution and in the solid state. The presence of a phosphonato group brought about an approximately two-fold increase in solution fluorescence quantum yield in comparison with that of a model N-alkyl pyrene-1-carboxamide. This effect was tentatively explained by stiffening of the amidophosphonate lateral chain which was caused by the interaction (intramolecular hydrogen bond) of phosphonate and amide groups. The synthesized phosphonic acid was soluble in a biological aqueous buffer (PBS, 0.01 M, pH 7.35) and was strongly emissive under these conditions (λem = 383, 400 nm, τ = 18.7 ns, ΦF > 0.98). Solid-state emission of diethyl 1-(pyrene-1-carboxamido)methylphosphonate (λmax = 485 nm; ΦF = 0.25) was assigned to π–π aggregates, the presence of which was revealed by single-crystal X-ray diffraction analysis.

Publisher

Beilstein Institut

Subject

Organic Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3