Models of necessity

Author:

Clark TimothyORCID,Hicks Martin GORCID

Abstract

The way chemists represent chemical structures as two-dimensional sketches made up of atoms and bonds, simplifying the complex three-dimensional molecules comprising nuclei and electrons of the quantum mechanical description, is the everyday language of chemistry. This language uses models, particularly of bonding, that are not contained in the quantum mechanical description of chemical systems, but has been used to derive machine-readable formats for storing and manipulating chemical structures in digital computers. This language is fuzzy and varies from chemist to chemist but has been astonishingly successful and perhaps contributes with its fuzziness to the success of chemistry. It is this creative imagination of chemical structures that has been fundamental to the cognition of chemistry and has allowed thought experiments to take place. Within the everyday language, the model nature of these concepts is not always clear to practicing chemists, so that controversial discussions about the merits of alternative models often arise. However, the extensive use of artificial intelligence (AI) and machine learning (ML) in chemistry, with the aim of being able to make reliable predictions, will require that these models be extended to cover all relevant properties and characteristics of chemical systems. This, in turn, imposes conditions such as completeness, compactness, computational efficiency and non-redundancy on the extensions to the almost universal Lewis and VSEPR bonding models. Thus, AI and ML are likely to be important in rationalizing, extending and standardizing chemical bonding models. This will not affect the everyday language of chemistry but may help to understand the unique basis of chemical language.

Publisher

Beilstein Institut

Subject

Organic Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3