The fate of a designed protein corona on nanoparticles in vitro and in vivo

Author:

Bargheer Denise,Nielsen Julius,Gébel Gabriella,Heine Markus,Salmen Sunhild C,Stauber Roland,Weller Horst,Heeren Joerg,Nielsen Peter

Abstract

A variety of monodisperse superparamagnetic iron oxide particles (SPIOs) was designed in which the surface was modified by PEGylation with mono- or bifunctional poly(ethylene oxide)amines (PEG). Using 125I-labeled test proteins (transferrin, albumin), the binding and exchange of corona proteins was studied first in vitro. Incubation with 125I-transferrin showed that with increasing grade of PEGylation the binding was substantially diminished without a difference between simply adsorbed and covalently bound protein. However, after incubation with excess albumin and subsequently whole plasma, transferrin from the preformed transferrin corona was more and more lost from SPIOs in the case of adsorbed proteins. If non-labeled transferrin was used as preformed corona and excess 125I-labeled albumin was added to the reaction mixtures with different SPIOs, a substantial amount of label was bound to the particles with initially adsorbed transferrin but little or even zero with covalently bound transferrin. These in vitro experiments show a clear difference in the stability of a preformed hard corona with adsorbed or covalently bound protein. This difference seems, however, to be of minor importance in vivo when polymer-coated 59Fe-SPIOs with adsorbed or covalently bound 125I-labeled mouse transferrin were injected intravenously in mice. With both protein coronae the 59Fe/125I-labelled particles were cleared from the blood stream within 30 min and appeared in the liver and spleen to a large extent (>90%). In addition, after 2 h already half of the 125I-labeled transferrin from both nanodevices was recycled back into the plasma and into tissue. This study confirms that adsorbed transferrin from a preformed protein corona is efficiently taken up by cells. It is also highlighted that a radiolabelling technique described in this study may be of value to investigate the role of protein corona formation in vivo for the respective nanoparticle uptake.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3