Profiling of Pentose Phosphate Pathway Intermediates in Blood Spots by Tandem Mass Spectrometry: Application to Transaldolase Deficiency

Author:

Huck Jojanneke H J12,Struys Eduard A2,Verhoeven Nanda M2,Jakobs Cornelis2,van der Knaap Marjo S1

Affiliation:

1. Department of Pediatrics and

2. Metabolic Unit of the Department of Clinical Chemistry, VU University Medical Centre, 1081 HV Amsterdam, The Netherlands

Abstract

AbstractBackground: Recently, several patients with abnormal polyol profiles in body fluids have been reported, but the origins of these polyols are unknown. We hypothesized that they are derived from sugar phosphate intermediates of the pentose phosphate pathway (PPP), and we developed a semiquantitative method for profiling of pentose phosphate pathway intermediates.Methods: Sugar phosphates in blood spots were simultaneously analyzed by liquid chromatography–tandem mass spectrometry using an ion-pair-loaded C18 HPLC column. The tandem mass spectrometer was operated in the multiple-reaction monitoring mode. Enzymatically prepared d-[13C6]glucose 6-phosphate was used as internal standard. The method was used to study sugar phosphates abnormalities in a patient affected with a deficiency of transaldolase (TALDO1; EC 2.2.1.2).Results: In control blood spots, dihydroxyacetone phosphate, pentulose 5-phosphates, pentose 5-phosphates, hexose 6-phosphates, and sedoheptulose 7-phosphate were detected. Detection limits ranged from ∼100 to ∼500 nmol/L. Glyceraldehyde 3-phosphate and erythrose 4-phosphate were undetectable. Intra- and interassay imprecision (CVs) were 10–17% and 12–21%, respectively. In blood from the TALDO1-deficient patient, sedoheptulose 7-phosphate was increased.Conclusions: The new method allows investigation of patients in whom a defect in the PPP is suspected. Measurements of sugar phosphate intermediates of the PPP may provide new insights into metabolic defects underlying the accumulating polyols.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3