Affiliation:
1. Department of Pediatrics and
2. Metabolic Unit of the Department of Clinical Chemistry, VU University Medical Centre, 1081 HV Amsterdam, The Netherlands
Abstract
AbstractBackground: Recently, several patients with abnormal polyol profiles in body fluids have been reported, but the origins of these polyols are unknown. We hypothesized that they are derived from sugar phosphate intermediates of the pentose phosphate pathway (PPP), and we developed a semiquantitative method for profiling of pentose phosphate pathway intermediates.Methods: Sugar phosphates in blood spots were simultaneously analyzed by liquid chromatography–tandem mass spectrometry using an ion-pair-loaded C18 HPLC column. The tandem mass spectrometer was operated in the multiple-reaction monitoring mode. Enzymatically prepared d-[13C6]glucose 6-phosphate was used as internal standard. The method was used to study sugar phosphates abnormalities in a patient affected with a deficiency of transaldolase (TALDO1; EC 2.2.1.2).Results: In control blood spots, dihydroxyacetone phosphate, pentulose 5-phosphates, pentose 5-phosphates, hexose 6-phosphates, and sedoheptulose 7-phosphate were detected. Detection limits ranged from ∼100 to ∼500 nmol/L. Glyceraldehyde 3-phosphate and erythrose 4-phosphate were undetectable. Intra- and interassay imprecision (CVs) were 10–17% and 12–21%, respectively. In blood from the TALDO1-deficient patient, sedoheptulose 7-phosphate was increased.Conclusions: The new method allows investigation of patients in whom a defect in the PPP is suspected. Measurements of sugar phosphate intermediates of the PPP may provide new insights into metabolic defects underlying the accumulating polyols.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry, medical,Clinical Biochemistry
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献