MicroRNAs as Regulators of Signal Transduction in Urological Tumors

Author:

Fendler Annika123,Stephan Carsten1,Yousef George M4,Jung Klaus12

Affiliation:

1. Department of Urology, University Hospital Charité, Berlin, Germany

2. Berlin Institute of Urologic Research, Berlin, Germany

3. Department of Biology, Chemistry and Pharmacy, Free University, Berlin, Germany

4. Department of Laboratory Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada

Abstract

BACKGROUND MicroRNAs (miRNAs) are short noncoding RNAs that have been shown to play pivotal roles in carcinogenesis. In the past decade, miRNAs have been the focus of much research in oncology, and there are great expectations for their utility as cancer biomarkers and therapeutic targets. CONTENT In this review we examine how miRNAs can regulate signal transduction pathways in urological tumors. We performed in silico target prediction using TargetScan 5.1 to identify the signal transduction targets of miRNA, and we summarize the experimental evidence detailing miRNA regulation of pathways analyzed herein. SUMMARY miRNAs, which have been shown to be dysregulated in bladder, prostate, and renal cell cancer, are predicted to target key proteins in signal transduction. Because androgen receptor signaling is a major regulator of prostate cancer growth, its regulation by miRNAs has been well described. In addition, members of the phosphatidylinositol 3-kinase/Akt (RAC-alpha serine/threonine-protein kinase) signaling pathway have been shown to be susceptible to miRNA regulation. In contrast, there are very few studies on the impact of miRNA regulation on signaling by VHL (von Hippel-Lindau tumor suppressor) and vascular endothelial growth factor in renal cell carcinoma or by fibroblast growth factor receptor 3 and p53 in bladder cancer. Many miRNAs are predicted to target important signaling pathways in urological tumors and are dysregulated in their respective cancer types; a systematic overview of miRNA regulation of signal transduction in urological tumors is pending. The identification of these regulatory networks might lead to novel targeted cancer therapies. In general, the targeting of miRNAs is a valuable approach to cancer therapy, as has been shown recently for various types of cancer.

Funder

Foundation of Urologic Research

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3