Plasma N-Glycan Profiling by Mass Spectrometry for Congenital Disorders of Glycosylation Type II

Author:

Guillard Maïlys12,Morava Eva3,van Delft Floris L4,Hague Rosie5,Körner Christian6,Adamowicz Maciej7,Wevers Ron A1,Lefeber Dirk J12

Affiliation:

1. Departments of Laboratory Medicine

2. Neurology, and

3. Paediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands

4. Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands

5. Royal Hospital for Sick Children, Glasgow, UK

6. Center for Child and Adolescent Medicine, Center for Metabolic Diseases Heidelberg, Heidelberg, Germany

7. Department of Biochemistry and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland

Abstract

BACKGROUND Determination of the genetic defect in patients with a congenital disorder of glycosylation (CDG) is challenging because of the wide clinical presentation, the large number of gene products involved, and the occurrence of secondary causes of underglycosylation. Transferrin isoelectric focusing has been the method of choice for CDG screening; however, improved methods are required for the molecular diagnosis of patients with CDG type II. METHODS Plasma samples with a typical transferrin isofocusing profile were analyzed. N-glycans were released from these samples by PNGase F [peptide-N4-(acetyl-β-glucosaminyl)-asparagine amidase] digestion, permethylated and purified, and measured on a MALDI linear ion trap mass spectrometer. A set of 38 glycans was used for quantitative comparison and to establish reference intervals for such glycan features as the number of antennae, the level of truncation, and fucosylation. Plasma N-glycans from control individuals, patients with known CDG type II defects, and patients with a secondary cause of underglycosylation were analyzed. RESULTS CDGs due to mannosyl (α-1,6-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase (MGAT2), β-1,4-galactosyltransferase 1 (B4GALT1), and SLC35C1 (a GDP-fucose transporter) defects could be diagnosed directly from the N-glycan profile. CDGs due to defects in proteins involved in Golgi trafficking, such as subunit 7 of the conserved oligomeric Golgi complex (COG7) and subunit V0 a2 of the lysosomal H+-transporting ATPase (ATP6V0A2) caused a loss of triantennary N-glycans and an increase of truncated structures. Secondary causes with liver involvement were characterized by increased fucosylation, whereas the presence of plasma sialidase produced isolated undersialylation. CONCLUSIONS MALDI ion trap analysis of plasma N-glycans documents features that discriminate between primary and secondary causes of underglycosylation and should be applied as the first step in the diagnostic track of all patients with an unsolved CDG type II.

Funder

European Commission

Metakids

Mibiton

Leidschendam

Netherlands

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3