Rapid and Sensitive Detection of Troponin I in Human Whole Blood Samples by Using Silver Nanoparticle Films and Microwave Heating

Author:

Aslan Kadir1,Grell Tsehai AJ1

Affiliation:

1. Department of Chemistry, Morgan State University, Baltimore, MD

Abstract

BACKGROUND Cardiovascular diseases are among the leading causes of mortality in developed countries. It is widely recognized that troponin I (TnI) can be used for the assessment of a myocardial infarction. METHODS We investigated the use of the microwave-accelerated and metal-enhanced fluorescence (MA-MEF), a technique based on the combined use of low-power microwave heating, silver nanoparticle films (SNFs), and fluorescence spectroscopy for the detection of TnI from human whole blood samples. SNFs were deposited onto amine-modified glass microscope slides by use of Tollen's reaction scheme and characterized by optical absorption spectroscopy and scanning electron microscopy. The detection of TnI from buffer solutions and human whole blood samples on SNFs was carried out by using fluorescence-based immunoassays at room temperature (control immunoassay, 2 h total assay time) or microwave heating (MA-MEF–based immunoassay, 1 min total assay time). RESULTS We found that the lower limits of detection for TnI from buffer solutions in the control immunoassay and MA-MEF–based immunoassay were 0.1 μg/L and 0.005 μg/L, respectively. However, we were unable to detect TnI in whole blood samples in the control immunoassays owing to the coagulation of whole blood within 5 min of the incubation step. The use of the MA-MEF technique allowed detection of TnI from whole blood samples in 1 min with a lower detection limit of 0.05 μg/L. CONCLUSIONS The MA-MEF–based immunoassay is one of the fastest reported quantitative detection methodos for detection of TnI in human whole blood and has low detection limits similar to those obtained with commercially available immunoassays.

Funder

National Institute of Biomedical Imaging and Bioengineering

American Heart Association

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3