Repair of Infarcted Myocardium by an Extract of Geum japonicum with Dual Effects on Angiogenesis and Myogenesis

Author:

Li Ming1,Yu Cheuk Man1,Cheng Lei1,Wang Mei1,Gu Xuemei1,Lee Ka Ho2,Wang Tian1,Sung Yn Tz1,Sanderson John E3

Affiliation:

1. Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics;

2. Anatomy; and Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR

3. Keele University Medical School, Department of Cardiology, The University Hospital of North Staffordshire National Health Service Trust, City General Hospital, Stoke-on-Trent, United Kingdom

Abstract

Abstract Background: It has become apparent recently that cardiac myocytes can divide after myocardial infarction, a circumstance that challenges the orthodox view that myocytes may be terminally differentiated. Replacement of the necrosed heart tissue by newly regenerated functional myocardium is a therapeutic ideal, but attempts to reconstitute functional myocardia and coronary vessels have been less successful. Methods: We isolated a fraction containing 5 compounds from the Chinese herb Geum japonicum, which stimulates the processes of angiogenesis and cardiomyogenesis. We investigated these dual properties in both ex vivo and in vivo systems. Results: We observed that this bioactive fraction displayed favorable dual actions on early angiogenesis and cardiomyogenesis in acute myocardial infarction in an animal model. Our results demonstrated that application of this bioactive fraction showed pronounced effects on limiting infarct size by 35%–45%, stimulating early development of new blood vessels in 24 h, and regenerating myocardium, replacing ∼49% of the total infarction volume after 2 weeks. Echocardiographic studies demonstrated marked improvement of left ventricular function within 2 days after infarction, and the improvement was sustained for >1 month. Conclusions: The properties of this bioactive fraction appear to be entirely novel and represent a new approach for the treatment of ischemic heart disease.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3