Detection of Microdeletion 22q11.2 in a Fetus by Next-Generation Sequencing of Maternal Plasma

Author:

Jensen Taylor J1,Dzakula Zeljko1,Deciu Cosmin1,van den Boom Dirk2,Ehrich Mathias2

Affiliation:

1. Sequenom Center for Molecular Medicine and

2. Sequenom, Inc., San Diego, CA

Abstract

Abstract BACKGROUND Efforts have been undertaken recently to assess the fetal genome through analysis of circulating cell-free (ccf) fetal DNA obtained from maternal plasma. Sequencing analysis of such ccf DNA has been shown to enable accurate prenatal detection of fetal aneuploidies, including trisomies of chromosomes 21, 18, and 13. We sought to extend these analyses to examine subchromosomal copy number variants through the sequencing of ccf DNA. We examined a clinically relevant genomic region, chromosome 22q11.2, the location of a series of well-characterized deletion anomalies that cause 22q11.2 deletion syndrome. METHODS We sequenced ccf DNA isolated from maternal plasma samples obtained from 2 patients with confirmed 22q11.2 deletion syndrome and from 14 women at low risk for fetal chromosomal abnormalities. The latter samples were used as controls, and the mean genomic coverage was 3.83-fold. Data were aligned to the human genome, repetitive regions were removed, the remaining data were normalized for GC content, and z scores were calculated for the affected region. RESULTS The median fetal DNA contribution for all samples was 18%, with the affected samples containing 17%–18% fetal DNA. Using a technique similar to that used for sequencing-based fetal aneuploidy detection from maternal plasma, we detected a statistically significant loss of representation of a portion of chromosome 22q11.2 in both of the affected fetal samples. No such loss was detected in any of the control samples. CONCLUSIONS Noninvasive prenatal diagnosis of subchromosomal fetal genomic anomalies is feasible with next-generation sequencing.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3