Quality Markers Addressing Preanalytical Variations of Blood and Plasma Processing Identified by Broad and Targeted Metabolite Profiling

Author:

Kamlage Beate1,Maldonado Sandra González1,Bethan Bianca1,Peter Erik1,Schmitz Oliver1,Liebenberg Volker2,Schatz Philipp2

Affiliation:

1. metanomics GmbH, Berlin, Germany

2. Metanomics Health GmbH, Berlin, Germany

Abstract

Abstract BACKGROUND Metabolomics is a valuable tool with applications in almost all life science areas. There is an increasing awareness of the essential need for high-quality biospecimens in studies applying omics technologies and biomarker research. Tools to detect effects of both blood and plasma processing are a key for assuring reproducible and credible results. We report on the response of the human plasma metabolome to common preanalytical variations in a comprehensive metabolomics analysis to reveal such high-quality markers. METHODS Human EDTA blood was subjected to preanalytical variations while being processed to plasma: microclotting, prolonged processing times at different temperatures, hemolysis, and contamination with buffy layer. In a second experiment, EDTA plasma was incubated at different temperatures for up to 16 h. Samples were subjected to GC-MS and liquid chromatography–tandem mass spectrometry–based metabolite profiling (MxP™ Broad Profiling) complemented by targeted methods, i.e., sphingoids (as part of MxP™ Lipids), MxP™ Catecholamines, and MxP™ Eicosanoids. RESULTS Short-term storage of blood, hemolysis, and short-term storage of noncooled plasma resulted in statistically significant increases of 4% to 19% and decreases of 8% to 12% of the metabolites. Microclotting, contamination of plasma with buffy layer, and short-term storage of cooled plasma were of less impact on the metabolome (0% to 11% of metabolites increased, 0% to 8% decreased). CONCLUSIONS The response of the human plasma metabolome to preanalytical variation demands implementation of thorough quality assurance and QC measures to obtain reproducible and credible results from metabolomics studies. Metabolites identified as sensitive to preanalytics can be used to control for sample quality.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3