Detection of Fetal Subchromosomal Abnormalities by Sequencing Circulating Cell-Free DNA from Maternal Plasma

Author:

Zhao Chen1,Tynan John1,Ehrich Mathias2,Hannum Gregory1,McCullough Ron1,Saldivar Juan-Sebastian1,Oeth Paul1,van den Boom Dirk2,Deciu Cosmin1

Affiliation:

1. Sequenom Laboratories

2. Sequenom Inc., San Diego, CA

Abstract

Abstract BACKGROUND The development of sequencing-based noninvasive prenatal testing (NIPT) has been largely focused on whole-chromosome aneuploidies (chromosomes 13, 18, 21, X, and Y). Collectively, they account for only 30% of all live births with a chromosome abnormality. Various structural chromosome changes, such as microdeletion/microduplication (MD) syndromes are more common but more challenging to detect. Recently, several publications have shown results on noninvasive detection of MDs by deep sequencing. These approaches demonstrated the proof of concept but are not economically feasible for large-scale clinical applications. METHODS We present a novel approach that uses low-coverage whole genome sequencing (approximately 0.2×) to detect MDs genome wide without requiring prior knowledge of the event's location. We developed a normalization method to reduce sequencing noise. We then applied a statistical method to search for consistently increased or decreased regions. A decision tree was used to differentiate whole-chromosome events from MDs. RESULTS We demonstrated via a simulation study that the sensitivity difference between our method and the theoretical limit was <5% for MDs ≥9 Mb. We tested the performance in a blinded study in which the MDs ranged from 3 to 40 Mb. In this study, our algorithm correctly identified 17 of 18 cases with MDs and 156 of 157 unaffected cases. CONCLUSIONS The limit of detection for any given MD syndrome is constrained by 4 factors: fetal fraction, MD size, coverage, and biological and technical variability of the event region. Our algorithm takes these factors into account and achieved 94.4% sensitivity and 99.4% specificity.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3