Affiliation:
1. Institut für Biochemie, Charité-Universitätsmedizin-Berlin, Berlin, Germany
2. Klinik für Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin-Berlin, Berlin, Germany
Abstract
Abstract
Background: 20S proteasomes, the proteolytic core particles of the major intracellular protein degradative pathway, are potential disease markers because they are detectable in human plasma as circulating proteasomes and their concentrations are increased in patients suffering from various diseases. To investigate the origin of circulating proteasomes, we compared some of their features with those of proteasomes isolated from major blood cells.
Methods: We isolated circulating proteasomes from the plasma of 2 patients with rheumatoid arthritis and 2 with systemic lupus erythematosus and from human plasma from healthy donors. We purified the proteasomes to apparent homogeneity and then used electron microscopy for imaging and chromatography for subtype spectrum analysis. We compared subtype results with those from 20S proteasomes purified from 4 major blood cell populations. We also tested proteasomes for enzymatic activity and immunosubunit content.
Results: Circulating proteasomes from plasma of healthy donors and from patients with autoimmune disease were found to have the same size and shape as erythrocyte proteasomes, be proteolytically active, and contain standard- and immunosubunits. Chromatography revealed 6 circulating proteasome subtype peaks in healthy donor plasma and 7 in patient donor plasma. Proteasomes from erythrocytes had 3 subtype peaks and those of monocytes, T-lymphocytes, and thrombocytes each had 5 different subtype peaks.
Conclusion: Circulating proteasomes were intact and enzymatically active in plasma from healthy donors and from patients with autoimmune disease. Because the subtype patterns of circulating proteasomes clearly differ from those of proteasomes from blood cells, these cells cannot be regarded as a major source of circulating proteasomes.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry (medical),Clinical Biochemistry
Reference24 articles.
1. Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal [Review]. Biochim Biophys Acta2004;1695:19-31.
2. Wada M, Kosaka M, Saito S, Sano T, Tanaka K, Ichihara A. Serum concentration and localization in tumor cells of proteasomes in patients with hematologic malignancy and their pathophysiologic significance. J Lab Clin Med1993;121:215-223.
3. Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Dörner T, Burmester G-R, et al. Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases. J Rheumatol2002;29:2045-2052.
4. Lavabre-Bertrand T, Henry L, Carillo S, Guiraud I, Quali A, Dutaud D, et al. Plasma proteasome level is a potential marker in patients with solid tumors and hemopoietic malignancies. Cancer2001;92:2493-2500.
5. Stoebner PE, Lavabre-Bertrand T, Henry L, Guiraud I, Carillo S, Dandurand M, et al. High plasma proteasome levels are detected in patients with metastatic malignant melanoma. Br J Dermatol2005;152:948-953.
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献