Affiliation:
1. Medicon Hellas S.A., Gerakas, Greece
2. Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
3. Department of Chemistry, University of Patras, Patras, Greece
4. Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
5. Department of Medical Genetics, University of Athens, St. Sophia’s Children’s Hospital, Athens, Greece
Abstract
Abstract
Background: Hemoglobinopathies are the most common inherited diseases worldwide. Various methods for genotyping of hemoglobin, beta (HBB) gene mutations have been reported, but there is need for a high sample-throughput, cost-effective method for simultaneous screening of several mutations. We report a method that combines the high detectability and dynamic range of chemiluminescence with the high allele-discrimination ability of probe extension reactions for simultaneous genotyping of 15 HBB mutations in a high sample-throughput, dry-reagent format.
Methods: We genotyped the HBB mutations IVSI-110G>A, CD39C>T, IVSI-1G>A, IVSI-6T>C, IVSII-745C>G, IVSII-1G>A, FSC6GAG>G-G, −101C>T, FSC5CCT>C−, IVSI-5G>A, FSC8AAG>−G, −87C>G, IVSII-848C>A, term+6C>G, and HbS (cd6GAG>GTG). The method used comprises the following: (a) duplex PCR that produces fragments encompassing all 15 mutations, (b) probe extension reactions in the presence of fluorescein-modified dCTP, using unpurified amplicons, and (c) microtiter well-based assay of extension products with a peroxidase-antifluorescein conjugate and a chemiluminogenic substrate. We used lyophilized dry reagents to simplify the procedure and assigned the genotype by the signal ratio of the normal-to-mutant–specific probe.
Results: We standardized the method by analyzing 60 samples with known genotypes and then validated by blindly genotyping 115 samples with 45 genotypes. The results were fully concordant with sequencing. The reproducibility (including PCR, probe extension reaction, and chemiluminometric assay) was studied for 20 days, and the CVs were 11%–19%.
Conclusions: This method is accurate, reproducible, and cost-effective in terms of equipment and reagents. The application of the method is simple, rapid, and robust. The microtiter well format allows genotyping of a large number of samples in parallel for several mutations.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry, medical,Clinical Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献