Affiliation:
1. Department of Clinical Chemistry, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
2. Ciphergen Biosystems, Inc., Fremont, CA
Abstract
Abstract
Background: Discovery of the central role of hepcidin in body iron regulation has shed new light on the pathophysiology of iron disorders. Information is lacking on newer analytical approaches to measure hepcidin in serum and urine. Recent reports on the measurement of urine and serum hepcidin by surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) necessitate analytical and clinical evaluation of MS-based methodologies.
Methods: We used SELDI-TOF MS, immunocapture, and tandem MS to identify and characterize hepcidin in serum and urine. In addition to diagnostic application, we investigated analytical reproducibility and biological and preanalytical variation for both serum and urine on Normal Phase 20 and Immobilized Metal Affinity Capture 30 ProteinChip arrays. We obtained samples from healthy controls and patients with documented iron-deficiency anemia, inflammation-induced anemia, thalassemia major, and hereditary hemochromatosis.
Results: Proteomic techniques showed that hepcidin-20, -22, and -25 isoforms are present in urine. Hepcidin-25 in serum had the same amino acid sequence as hepcidin-25 in urine, whereas hepcidin-22 was not detected in serum. The interarray CV was 15% to 27%, and interspot CV was 11% to 13%. Preliminary studies showed that hepcidin-25 differentiated disorders of iron metabolism. Urine hepcidin is more affected by multiple freeze-thaw cycles and storage conditions, but less influenced by diurnal variation, than is serum hepcidin.
Conclusion: SELDI-TOF MS can be used to measure hepcidin in both serum and urine, but serum requires a standardized sampling protocol.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry (medical),Clinical Biochemistry
Cited by
192 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献