Gene Expression Analysis in Platelets from a Single Donor: Evaluation of a PCR-Based Amplification Technique

Author:

Rox Jutta Maria1,Bugert Peter2,Müller Jens1,Schorr Alexander1,Hanfland Peter1,Madlener Katharina3,Klüter Harald2,Pötzsch Bernd1

Affiliation:

1. Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Bonn, Germany

2. Institute of Transfusion Medicine and Immunology, Red Cross Blood Service of Baden-Württemberg-Hessen, University of Heidelberg, Faculty of Clinical Medicine, Mannheim, Germany

3. Department of Haemostaseology, Clinical Immunology and Transfusion Medicine, Kerckhoff-Klinik, Bad Nauheim, Germany

Abstract

Abstract Background: Genetic analysis of platelet mRNA may facilitate the diagnosis of disorders affecting the megakaryocytic-platelet lineage. Its use, however, is limited by the exceptionally small yield of platelet mRNA and the risk of leukocyte contamination during platelet preparation. Methods: We depleted platelet suspensions of leukocytes by filtration and used a PCR-based RNA amplification step [switching mechanism at the 5′ end of RNA templates (SMART)]. We tested the reliability and precision of the RNA amplification procedure by use of real-time PCR to measure quantities of specific transcripts: von Willebrand factor (vWF), A-subunit of coagulation factor XIII (F13A), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Microarray analysis was performed on platelet RNA with and without amplification. Results: Microgram quantities of platelet-specific cDNAs were produced from as little as 50 ng of total platelet RNA or 40 mL of whole blood. At cycle numbers <16, amplification of all transcripts tested was exponential with slightly more efficient amplification of low-abundance transcripts. Expression profiling of 9850 genes gave identical results for 9815 genes (1576 positive/8239 negative). Eight transcripts failed to be amplified by the SMART procedure. Expression of vWF, F13A, and GAPDH transcripts showed only minor day-to-day variations in three healthy individuals. Conclusion: The proposed protocol makes extremely small amounts of platelet RNA available for gene expression analysis in single patients.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3