Evaluation of Quality-Control Criteria for Microarray Gene Expression Analysis

Author:

Dumur Catherine I1,Nasim Suhail1,Best Al M2,Archer Kellie J2,Ladd Amy C1,Mas Valeria R3,Wilkinson David S1,Garrett Carleton T1,Ferreira-Gonzalez Andrea1

Affiliation:

1. Departments of Pathology

2. Biostatistics, and

3. Surgery, Virginia Commonwealth University, Richmond, VA

Abstract

Abstract Background: Development of quality-control criteria to ensure reproducibility of microarray results for potential clinical application is still in its infancy. Methods: In the present studies we developed quality-control criteria and evaluated their effect in microarray data analysis using total RNA from cell lines, frozen tumors, and a commercially available reference RNA. Quality-control criteria such as A260/A280 ratios, percentage of rRNA, and median size of cDNA and cRNA synthesis products were evaluated for robustness in microarray analysis. Furthermore, precision studies using a reference material were performed on the Affymetrix® HG-U133A high-density oligonucleotide microarrays. The same reference RNA sample was examined in 16 different chips run on 2 different days in the four different modules of the Affymetrix fluidics workstation. Fresh and frozen fragmented cRNAs were also compared. An ANOVA model was fit to identify the main sources of variation. Results: Good-quality samples showed >30% rRNA in the electropherograms and cDNA and cRNA synthesis products with median sizes of 2.0 and 3.0 kb, respectively. Precision studies showed that the main source of variation was the day-to-day variability, minimally affecting hybridization exogenous control genes. Altogether, the results showed that the Affymetrix Genechip® system is highly reproducible when RNA that meet the quality-control criteria are used (overall P >0.01). Conclusions: These results confirm the need to establish defined quality-control criteria for sample quality to distinguish between analytical and biological variability.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3