Glucose Meter Performance Criteria for Tight Glycemic Control Estimated by Simulation Modeling

Author:

Karon Brad S1,Boyd James C2,Klee George G1

Affiliation:

1. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN

2. Department of Pathology, University of Virginia Health System, Charlottesville, VA

Abstract

AbstractBackground: Glucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are not currently defined. We used simulation modeling to relate glucose meter performance characteristics to insulin dosing errors during TGC.Methods: We used 29 920 glucose values from patients on TGC at 1 institution to represent the expected distribution of glucose values during TGC, and we used 2 different simulation models to relate glucose meter analytical performance to insulin dosing error using these 29 920 initial glucose values and assuming 10%, 15%, or 20% total allowable error (TEa) criteria.Results: One-category insulin dosing errors were common under all error conditions. Two-category insulin dosing errors occurred more frequently when either 20% or 15% TEa was assumed compared with 10% total error. Dosing errors of 3 or more categories, those most likely to result in hypoglycemia and thus patient harm, occurred infrequently under all error conditions with the exception of 20% TEa.Conclusions: Glucose meter technologies that operate within a 15% total allowable error tolerance are unlikely to produce large (≥3-category) insulin dosing errors during TGC. Increasing performance to 10% TEa should reduce the frequency of 2-category insulin dosing errors, although additional studies are necessary to determine the clinical impact of such errors during TGC. Current criteria that allow 20% total allowable error in glucose meters may not be optimal for patient management during TGC.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3