Analysis of the Size Distributions of Fetal and Maternal Cell-Free DNA by Paired-End Sequencing

Author:

Fan H Christina1,Blumenfeld Yair J2,Chitkara Usha2,Hudgins Louanne3,Quake Stephen R1

Affiliation:

1. Department of Bioengineering, Stanford University and Howard Hughes Medical Institute, Stanford, CA

2. Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA

3. Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA

Abstract

BACKGROUND Noninvasive prenatal diagnosis with cell-free DNA in maternal plasma is challenging because only a small portion of the DNA sample is derived from the fetus. A few previous studies provided size-range estimates of maternal and fetal DNA, but direct measurement of the size distributions is difficult because of the small quantity of cell-free DNA. METHODS We used high-throughput paired-end sequencing to directly measure the size distributions of maternal and fetal DNA in cell-free maternal plasma collected from 3 typical diploid and 4 aneuploid male pregnancies. As a control, restriction fragments of λ DNA were also sequenced. RESULTS Cell-free DNA had a dominant peak at approximately 162 bp and a minor peak at approximately 340 bp. Chromosome Y sequences were rarely longer than 250 bp but were present in sizes of <150 bp at a larger proportion compared with the rest of the sequences. Selective analysis of the shortest fragments generally increased the fetal DNA fraction but did not necessarily increase the sensitivity of aneuploidy detection, owing to the reduction in the number of DNA molecules being counted. Restriction fragments of λ DNA with sizes between 60 bp and 120 bp were preferentially sequenced, indicating that the shotgun sequencing work flow introduced a bias toward shorter fragments. CONCLUSIONS Our results confirm that fetal DNA is shorter than maternal DNA. The enrichment of fetal DNA by size selection, however, may not provide a dramatic increase in sensitivity for assays that rely on length measurement in situ because of a trade-off between the fetal DNA fraction and the number of molecules being counted.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3