A “Culture” Shift: Broad Bacterial Detection, Identification, and Antimicrobial Susceptibility Testing Directly from Whole Blood

Author:

Andini Nadya1,Hu Anne1,Zhou Luming2,Cogill Steven1,Wang Tza-Huei3,Wittwer Carl T2,Yang Samuel1

Affiliation:

1. Department of Emergency Medicine, Stanford University, Stanford, CA

2. Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT

3. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD

Abstract

Abstract BACKGROUND The time required for bloodstream pathogen detection, identification (ID), and antimicrobial susceptibility testing (AST) does not satisfy the acute needs of disease management. Conventional methods take up to 3 days for ID and AST. Molecular diagnostics have reduced times for ID, but their promise to supplant culture is unmet because AST times remain slow. We developed a combined quantitative PCR (qPCR)-based ID+AST assay with sequential detection, ID, and AST of leading nosocomial bacterial pathogens. METHODS ID+AST was performed on whole blood samples by (a) removing blood cells, (b) brief bacterial enrichment, (c) bacterial detection and ID, and (d) species-specific antimicrobial treatment. Broad-spectrum qPCR of the internal transcribed spacer between the 16S and 23S was amplified for detection. High-resolution melting identified the species with a curve classifier. AST was enabled by Ct differences between treated and untreated samples. RESULTS A detection limit of 1 CFU/mL was achieved for Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. All species were accurately identified by unique melting curves. Antimicrobial minimum inhibitory concentrations were identified with Ct differences of ≥1 cycle. Using an RNA target allowed reduction of AST incubation time from 60 min to 5 min. Rapid-cycle amplification reduced qPCR times by 83% to 30 min. CONCLUSIONS Combined, sequential ID+AST protocols allow rapid and reliable detection, ID, and AST for the diagnosis of bloodstream infections, enabling conversion of empiric to targeted therapy by the second dose of antimicrobials.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3