Real-Time PCR Assays Targeting a Unique Chromosomal Sequence of Yersinia pestis

Author:

Chase Catherine J1,Ulrich Melanie P1,Wasieloski Leonard P1,Kondig John P1,Garrison Jeffrey2,Lindler Luther E3,Kulesh David A1

Affiliation:

1. Diagnostic Systems Division, The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD

2. Battelle, Columbus, OH

3. National Biodefense Analysis and Countermeasures Center, Department of Homeland Security, Frederick, MD

Abstract

Abstract Background: Yersinia pestis, the causative agent of the zoonotic infection plague, is a major concern as a potential bioweapon. Current real-time PCR assays used for Y. pestis detection are based on plasmid targets, some of which may generate false-positive results. Methods: Using the yp48 gene of Y. pestis, we designed and tested 2 real-time TaqMan® minor groove binder (MGB) assays that allowed us to use chromosomal genes as both confirmatory and differential targets for Y. pestis. We also designed several additional assays using both Simple-Probe® and MGB Eclipse™ probe technologies for the selective differentiation of Yersinia pseudotuberculosis from Y. pestis. These assays were designed around a 25-bp insertion site recently identified within the yp48 gene of Y. pseudotuberculosis. Results: The Y. pestis-specific assay distinguished this bacterium from other Yersinia species but had unacceptable low-level detection of Y. pseudotuberculosis, a closely related species. Simple-Probe and MGB Eclipse probes specific for the 25-bp insertion detected only Y. pseudotuberculosis DNA. Probes that spanned the deletion site detected both Y. pestis and Y. pseudotuberculosis DNA, and the 2 species were clearly differentiated by a post-PCR melting temperature (Tm) analysis. The Simple-Probe assay produced an almost 7 °C Tm difference and the MGB Eclipse probe a slightly more than 4 °C difference. Conclusions: Our method clearly discriminates Y. pestis DNA from all other Yersinia species tested and from the closely related Y. pseudotuberculosis. These chromosomal assays are important both to verify the presence of Y. pestis based on a chromosomal target and to easily distinguish it from Y. pseudotuberculosis.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3