Size Separation of Circulatory DNA in Maternal Plasma Permits Ready Detection of Fetal DNA Polymorphisms

Author:

Li Ying1,Zimmermann Bernhard1,Rusterholz Corinne1,Kang Anjeung1,Holzgreve Wolfgang1,Hahn Sinuhe1

Affiliation:

1. University Women’s Hospital/Department of Research, University of Basel, Basel, Switzerland

Abstract

Abstract Background: Analysis of fetal DNA in maternal plasma has recently been introduced as a new method for noninvasive prenatal diagnosis, particularly for the analysis of fetal genetic traits, which are absent from the maternal genome, e.g., RHD or Y-chromosome-specific sequences. To date, the analysis of other fetal genetic traits has been more problematic because of the overwhelming presence of maternal DNA sequences in the circulation. We examined whether different biochemical properties can be discerned between fetal and maternal circulatory DNA. Methods: Plasma DNA was examined by agarose gel electrophoresis. The fractions of fetal and maternal DNA in size-fractionated fragments were assayed by real-time PCR. The determination of paternally and maternally inherited fetal genetic traits was examined by use of highly polymorphic chromosome-21-specific microsatellite markers. Results: Size fractionation of circulatory DNA indicated that the major portion of cell-free fetal DNA had an approximate molecular size of <0.3 kb, whereas maternally derived sequences were, on average, considerably larger than 1 kb. Analysis of size-fractionated DNA (≤0.3 kb) from maternal plasma samples facilitated the ready detection of paternally and maternally inherited microsatellite markers. Conclusions: Circulatory fetal DNA can be enriched by size selection of fragment sizes less than ∼0.3kb. Such selection permits easier analysis of both paternally and maternally inherited DNA polymorphisms.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3