Processing of Pro–Brain Natriuretic Peptide Is Suppressed by O-Glycosylation in the Region Close to the Cleavage Site

Author:

Semenov Alexander G1,Postnikov Alexander B1,Tamm Natalia N1,Seferian Karina R1,Karpova Natalia S2,Bloshchitsyna Marina N1,Koshkina Ekaterina V3,Krasnoselsky Mihail I4,Serebryanaya Daria V2,Katrukha Alexey G1

Affiliation:

1. HyTest Ltd., Turku, Finland

2. Department of Biochemistry, Moscow State University, Moscow, Russia

3. 67 City Hospital, Moscow, Russia

4. Moscow State Medico-Stomatological University, Moscow, Russia

Abstract

Abstract Background: Processing of the brain natriuretic peptide (BNP) precursor, proBNP, is a convertase-dependent reaction that produces 2 molecules—the active BNP hormone and the N-terminal part of proBNP (NT-proBNP). Although proBNP was first described more than 15 years ago, very little is known about the cellular mechanism of its processing. The study of proBNP processing mechanisms is important, because processing impairments could be associated with the development of heart failure (HF). Methods: The biochemical properties of recombinant proBNP and NT-proBNP and the same molecules derived from the blood of HF patients were analyzed by gel-filtration chromatography, site-directed mutagenesis, and different immunochemical methods with a panel of monoclonal antibodies (MAbs). Results: Part of the proBNP molecule (amino acid residues 61–76) located near the cleavage site was inaccessible to specific MAbs because of the presence of O-glycans, whereas the same region in NT-proBNP was completely accessible. We demonstrated that a convertase (furin) could effectively cleave deglycosylated (but not intact) proBNP. Of several mutant proBNP forms produced in a HEK 293 cell line, only the T71A variant was effectively processed in the cell. Conclusions: Only proBNP that was not glycosylated in the region of the cleavage site could effectively be processed into BNP and NT-proBNP. Site-directed mutagenesis enabled us to ascertain the unique suppressing role of T71-bound O-glycan in proBNP processing.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3