Microfluidics Digital PCR Reveals a Higher than Expected Fraction of Fetal DNA in Maternal Plasma

Author:

Lun Fiona M F12,Chiu Rossa W K12,Allen Chan K C12,Yeung Leung Tak3,Kin Lau Tze3,Dennis Lo Y M12

Affiliation:

1. Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences

2. Department of Chemical Pathology, and

3. Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Abstract

Abstract Background: The precise measurement of cell-free fetal DNA in maternal plasma facilitates noninvasive prenatal diagnosis of fetal chromosomal aneuploidies and other applications. We tested the hypothesis that microfluidics digital PCR, in which individual fetal-DNA molecules are counted, could enhance the precision of measuring circulating fetal DNA. Methods: We first determined whether microfluidics digital PCR, real-time PCR, and mass spectrometry produced different estimates of male-DNA concentrations in artificial mixtures of male and female DNA. We then focused on comparing the imprecision of microfluidics digital PCR with that of a well-established nondigital PCR assay for measuring male fetal DNA in maternal plasma. Results: Of the tested platforms, microfluidics digital PCR demonstrated the least quantitative bias for measuring the fractional concentration of male DNA. This assay had a lower imprecision and higher clinical sensitivity compared with nondigital real-time PCR. With the ZFY/ZFX assay on the microfluidics digital PCR platform, the median fractional concentration of fetal DNA in maternal plasma was ≥2 times higher for all 3 trimesters of pregnancy than previously reported. Conclusions: Microfluidics digital PCR represents an improvement over previous methods for quantifying fetal DNA in maternal plasma, enabling diagnostic and research applications requiring precise quantification. This approach may also impact other diagnostic applications of plasma nucleic acids, e.g., in oncology and transplantation.

Funder

University Grants Committee

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3