Utilizing the Molecular Gateway: The Path to Personalized Cancer Management

Author:

Overdevest Jonathan B1,Theodorescu Dan1,Lee Jae K2

Affiliation:

1. Departments of Molecular Physiology and Biological Physics; and

2. Public Health Sciences, University of Virginia Health Sciences Center, Charlottesville, VA

Abstract

Abstract Background: Personalized medicine is the provision of focused prevention, detection, prognostic, and therapeutic efforts according to an individual’s genetic composition. The actualization of personalized medicine will require combining a patient’s conventional clinical data with bioinformatics-based molecular-assessment profiles. This synergistic approach offers tangible benefits, such as heightened specificity in the molecular classification of cancer subtypes, improved prognostic accuracy, targeted development of new therapies, novel applications for old therapies, and tailored selection and delivery of chemotherapeutics. Content: Our ability to personalize cancer management is rapidly expanding through biotechnological advances in the postgenomic era. The platforms of genomics, proteomics, single-nucleotide polymorphism profiling and haplotype mapping, high-throughput genomic sequencing, and pharmacogenomics constitute the mechanisms for the molecular assessment of a patient’s tumor. The complementary data derived during these assessments is processed through bioinformatics analysis to offer unique insights for linking expression profiles to disease detection, tumor response to chemotherapy, and patient survival. Together, these approaches permit improved physician capacity to assess risk, target therapies, and tailor a chemotherapeutic treatment course. Summary: Personalized medicine is poised for rapid growth as the insights provided by new bioinformatics models are integrated with current procedures for assessing and treating cancer patients. Integration of these biological platforms will require refinement of tissue-processing and analysis techniques, particularly in clinical pathology, to overcome obstacles in customizing our ability to treat cancer.

Funder

AstraZeneca

NIH

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3