Specific Determination of β-Galactocerebrosidase Activity via Competitive Inhibition of β-Galactosidase

Author:

Martino Sabata12,Tiribuzi Roberto12,Tortori Andrea1,Conti Daniele13,Visigalli Ilaria3,Lattanzi Annalisa3,Biffi Alessandra3,Gritti Angela3,Orlacchio Aldo1

Affiliation:

1. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy

2. S. Martino and R. Tiribuzi contributed equally to this work

3. San Raffaele Telethon Institute for Gene Therapy, Milano, Italy

Abstract

Abstract Background: The determination of cellular β-galactocerebrosidase activity is an established procedure to diagnose Krabbe disease and monitor the efficacy of gene/stem cell-based therapeutic approaches aimed at restoring defective enzymatic activity in patients or disease models. Current biochemical assays for β-galactocerebrosidase show high specificity but generally require large protein amounts from scanty sources such as hematopoietic or neural stem cells. We developed a novel assay based on the hypothesis that specific measurements of β-galactocerebrosidase activity can be performed following complete inhibition of β-galactosidase activity. Methods: We performed the assay using 2–7.5 μg of sample proteins with the artificial fluorogenic substrate 4-methylumbelliferone-β-galactopyranoside (1.5 mmol/L) resuspended in 0.1/0.2 mol/L citrate/phosphate buffer, pH 4.0, and AgNO3. Reactions were incubated for 30 min at 37 °C. Fluorescence of liberated 4-methylumbelliferone was measured on a spectrofluorometer (λex 360 nm, λem 446 nm). Results: AgNO3 was a competitive inhibitor of β-galactosidase [inhibition constant (Ki) = 0.12 μmol/L] and completely inhibited β-galactosidase activity when used at a concentration of 11 μmol/L. Under this condition, the β-galactocerebrosidase activity was preserved and could be specifically and accurately measured. The assay can detect β-galactocerebrosidase activity in as little as 2 μg cell protein extract or 7.5 μg tissue. Assay validation was performed using (a) brain tissues from wild-type and twitcher mice and (b) murine GALC−/− hematopoietic stem cells and neural precursor cells transduced by GALC-lentiviral vectors. Conclusions: The procedure is straightforward, rapid, and reproducible. Within a clinical context, our method unequivocally discriminated cells from healthy subjects and Krabbe patients and is therefore suitable for diagnostic applications.

Funder

Ministero della Salute

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3