The Bottleneck in the Cancer Biomarker Pipeline and Protein Quantification through Mass Spectrometry–Based Approaches: Current Strategies for Candidate Verification

Author:

Makawita Shalini1,Diamandis Eleftherios P123

Affiliation:

1. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada

2. Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada

3. Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada

Abstract

Abstract Background: Although robust discovery-phase platforms have resulted in the generation of large numbers of candidate cancer biomarkers, a comparable system for subsequent quantitative assessment and verification of all candidates is lacking. Established immunoassays and available antibodies permit analysis of small subsets of candidates; however, the lack of commercially available reagents, coupled with high costs and lengthy production and purification times, have rendered the large majority of candidates untestable. Content: Mass spectrometry (MS), and in particular multiple reaction monitoring (MRM)-MS, has emerged as an alternative technology to immunoassays for quantification of target proteins. Novel biomarkers are expected to be present in serum in the low (μg/L–ng/L) range, but analysis of complex serum or plasma digests by MS has yielded milligram per liter limits of detection at best. The coupling of prior sample purification strategies such as enrichment of target analytes, depletion of high-abundance proteins, and prefractionation, has enabled reliable penetration into the low microgram per liter range. This review highlights prospects for candidate verification through MS-based methods. We first outline the biomarker discovery pipeline and its existing bottleneck; we then discuss various MRM-based strategies for targeted protein quantification, the applicability of such methods for candidate verification, and points of concern. Summary: Although it is unlikely that MS-based protein quantification will replace immunoassays in the near future, with the expected improvements in limits of detection and specificity in instrumentation, MRM-based approaches show great promise for alleviating the existing bottleneck to discovery.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3