Interactive Modeling for Ongoing Utility of Pharmacogenetic Diagnostic Testing: Application for Warfarin Therapy

Author:

Linder Mark W1,Bon Homme Marjorie2,Reynolds Kristen K13,Gage Brian F4,Eby Charles5,Silvestrov Natalia6,Valdes Roland1

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY

2. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA

3. PGxl Laboratories, Louisville, KY; Departments of

4. Internal Medicine and

5. Genomic and Laboratory Medicine, Washington University School of Medicine, St. Louis, MO

6. Morehouse University, Atlanta, GA

Abstract

Abstract Background: The application of pharmacogenetic results requires demonstrable correlations between a test result and an indicated specific course of action. We developed a computational decision-support tool that combines patient-specific genotype and phenotype information to provide strategic dosage guidance. This tool, through estimating quantitative and temporal parameters associated with the metabolism- and concentration-dependent response to warfarin, provides the necessary patient-specific context for interpreting international normalized ratio (INR) measurements. Methods: We analyzed clinical information, plasma S-warfarin concentration, and CYP2C9 (cytochrome P450, family 2, subfamily C, polypeptide 9) and VKORC1 (vitamin K epoxide reductase complex, subunit 1) genotypes for 137 patients with stable INRs. Plasma S-warfarin concentrations were evaluated by VKORC1 genotype (−1639G>A). The steady-state plasma S-warfarin concentration was calculated with CYP2C9 genotype–based clearance rates and compared with actual measurements. Results: The plasma S-warfarin concentration required to yield the target INR response is significantly (P < 0.05) associated with VKORC1 −1639G>A genotype (GG, 0.68 mg/L; AG, 0.48 mg/L; AA, 0.27 mg/L). Modeling of the plasma S-warfarin concentration according to CYP2C9 genotype predicted 58% of the variation in measured S-warfarin concentration: Measured [S-warfarin] = 0.67(Estimated [S-warfarin]) + 0.16 mg/L. Conclusions: The target interval of plasma S-warfarin concentration required to yield a therapeutic INR can be predicted from the VKORC1 genotype (pharmacodynamics), and the progressive changes in S-warfarin concentration after repeated daily dosing can be predicted from the CYP2C9 genotype (pharmacokinetics). Combining the application of multivariate equations for estimating the maintenance dose with genotype-guided pharmacokinetics/pharmacodynamics modeling provides a powerful tool for maximizing the value of CYP2C9 and VKORC1 test results for ongoing application to patient care.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3