Fragile X Mental Retardation 1 (FMR1) Intron 1 Methylation in Blood Predicts Verbal Cognitive Impairment in Female Carriers of Expanded FMR1 Alleles: Evidence from a Pilot Study

Author:

Godler David E1,Slater Howard R12,Bui Quang M3,Storey Elsdon4,Ono Michele Y56,Gehling Freya1,Inaba Yoshimi1,Francis David1,Hopper John L3,Kinsella Glynda7,Amor David J12,Hagerman Randi J56,Loesch Danuta Z7

Affiliation:

1. Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia

2. Department of Paediatrics, University of Melbourne, Melbourne, Australia

3. Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Carlton, Australia

4. Van Cleef Roet Centre for Nervous Diseases, Department of Medicine, Monash University, Melbourne, Australia

5. UC Davis MIND Institute, Sacramento, CA

6. Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, CA

7. School of Psychological Science, La Trobe University, Melbourne, Australia

Abstract

Abstract BACKGROUND Cognitive status in females with mutations in the FMR1 (fragile X mental retardation 1) gene is highly variable. A biomarker would be of value for predicting which individuals were liable to develop cognitive impairment and could benefit from early intervention. A detailed analysis of CpG sites bridging exon 1 and intron 1 of FMR1, known as fragile X–related epigenetic element 2 (FREE2), suggests that a simple blood test could identify these individuals. METHODS Study participants included 74 control females (<40 CGG repeats), 62 premutation (PM) females (55–200 CGG repeats), and 18 full-mutation (FM) females assessed with Wechsler intelligence quotient (IQ) tests. We used MALDI-TOF mass spectrometry to determine the methylation status of FREE2 CpG sites that best identified low-functioning (IQ <70) FM females (>200 CGG repeats), compared the results with those for Southern blot FMR1 activation ratios, and related these assessments to the level of production of the FMR1 protein product in blood. RESULTS A methylation analysis of intron 1 CpG sites 10–12 showed the highest diagnostic sensitivity (100%) and specificity (98%) of all the molecular measures tested for detecting females with a standardized verbal IQ of <70 among the study participants. In the group consisting of only FM females, methylation of these sites was significantly correlated with full-scale IQ, verbal IQ, and performance IQ. Several verbal subtest scores showed strong correlation with the methylation of these sites (P = 1.2 × 10−5) after adjustment for multiple measures. CONCLUSIONS The data suggest that hypermethylation of the FMR1 intron 1 sites in blood is predictive of cognitive impairment in FM females, with implications for improved fragile X syndrome diagnostics in young children and screening of the newborn population.

Funder

National Health and Medical Research Council

National Institute of Child Health and Human Development

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3