Simultaneous Detection of Gene Fusions and Base Mutations in Cancer Tissue Biopsies by Sequencing Dual Nucleic Acid Templates in Unified Reaction

Author:

Song Zhengbo1,Xu Chunwei2,He Yunwei3,Li Fugui4,Wang Wenxian1,Zhu Youcai5,Gao Yanqiu3,Ji Mingfang4,Chen Miao3,Lai Jiajia3,Cheng Weimin4,Benes Cyril H6,Chen Li3

Affiliation:

1. Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, PR China

2. Department of Pathology, Fujian Cancer Hospital and Fujian Medical University, Fuzhou, Fujian Province, PR China

3. HeliTec Biotechnologies, Shenzhen, Guangdong Province, PR China

4. Cancer Research Institute of Zhongshan City, Zhongshan, Guangdong Province, PR China

5. Department of Thoracic Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang Province, PR China

6. Massachusetts General Hospital Cancer Research Center and Harvard Medical School, Charlestown, MA

Abstract

Abstract BACKGROUND Targeted next-generation sequencing is a powerful method to comprehensively identify biomarkers for cancer. Starting material is currently either DNA or RNA for different variations, but splitting to 2 assays is burdensome and sometimes unpractical, causing delay or complete lack of detection of critical events, in particular, potent and targetable fusion events. An assay that analyzes both templates in a streamlined process is eagerly needed. METHODS We developed a single-tube, dual-template assay and an integrated bioinformatics pipeline for relevant variant calling. RNA was used for fusion detection, whereas DNA was used for single-nucleotide variations (SNVs) and insertion and deletions (indels). The reaction chemistry featured barcoded adaptor ligation, multiplexed linear amplification, and multiplexed PCR for noise reduction and novel fusion detection. An auxiliary quality control assay was also developed. RESULTS In a 1000-sample lung tumor cohort, we identified all major SNV/indel hotspots and fusions, as well as MET exon 14 skipping and several novel or rare fusions. The occurrence frequencies were in line with previous reports and were verified by Sanger sequencing. One noteworthy fusion event was HLA-DRB1-MET that constituted the second intergenic MET fusion ever detected in lung cancer. CONCLUSIONS This method should benefit not only a majority of patients carrying core actionable targets but also those with rare variations. Future extension of this assay to RNA expression and DNA copy number profiling of target genes such as programmed death-ligand 1 may provide additional biomarkers for immune checkpoint therapies.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3