Performance Comparison of Reverse Transcriptases for Single-Cell Studies

Author:

Zucha Daniel12,Androvic Peter13,Kubista Mikael14,Valihrach Lukas1

Affiliation:

1. Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czech Republic

2. Faculty of Science, Charles University, Prague, Czech Republic

3. Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic

4. TATAA Biocenter AB, Gothenburg, Sweden

Abstract

Abstract BACKGROUND Recent advances allowing quantification of RNA from single cells are revolutionizing biology and medicine. Currently, almost all single-cell transcriptomic protocols rely on reverse transcription (RT). However, RT is recognized as a known source of variability, particularly with low amounts of RNA. Recently, several new reverse transcriptases (RTases) with the potential to decrease the loss of information have been developed, but knowledge of their performance is limited. METHODS We compared the performance of 11 RTases in quantitative reverse transcription PCR (RT-qPCR) on single-cell and 100-cell bulk templates, using 2 priming strategies: a conventional mixture of random hexamers with oligo(dT)s and a reduced concentration of oligo(dT)s mimicking common single-cell RNA-sequencing protocols. Depending on their performance, 2 RTases were further tested in a high-throughput single-cell experiment. RESULTS All tested RTases demonstrated high precision (R2 > 0.9445). The most pronounced differences were found in their ability to capture rare transcripts (0%–90% reaction positivity rate) and in their absolute reaction yield (7.3%–137.9%). RTase performance and reproducibility were compared with Z scores. The 2 best-performing enzymes were Maxima H− and SuperScript IV. The validity of the obtained results was confirmed in a follow-up single-cell model experiment. The better-performing enzyme (Maxima H−) increased the sensitivity of the single-cell experiment and improved resolution in the clustering analysis over the commonly used RTase (SuperScript II). CONCLUSIONS Our comprehensive comparison of 11 RTases in low RNA input conditions identified 2 best-performing enzymes. Our results provide a point of reference for the improvement of current single-cell quantification protocols.

Funder

Institute of Biotechnology CAS and Institute of Experimental Medicine CAS

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3