Ultrasensitive Detection of Chimerism by Single-Molecule Molecular Inversion Probe Capture and High-Throughput Sequencing of Copy Number Deletion Polymorphisms

Author:

Wu David1,Waalkes Adam1,Penewit Kelsi1,Salipante Stephen J1

Affiliation:

1. Department of Laboratory Medicine, University of Washington, Seattle, WA

Abstract

Abstract BACKGROUND Genomic chimerism, the co-occurrence of cells from different genetic origins, provides important diagnostic information in diverse clinical contexts, including graft injury detection and longitudinal surveillance of hematopoietic stem cell transplantation patients, but existing assays are limiting. Here we applied single-molecule molecular inversion probes (smMIPs), a high-throughput sequencing technology combining multiplexed target capture with read quantification mediated by unique molecular identifiers, to detect chimerism based on the presence or absence of polymorphic genomic loci. METHODS We designed a 159-smMIP panel targeting 40 autosomal regions of frequent homozygous deletion across human populations and 2 sex-linked loci. We developed methods for detecting and quantitating loci absent from 1 cell population but present in another, which could be used to sensitively identify chimeric cell populations. RESULTS Unrelated individuals and first-degree relatives were highly polymorphic across the loci examined. Using synthetic DNA mixtures, limits of detection of at least 1 in 10000 chimeric cells were demonstrated without prior knowledge of genotypes, and mixtures of up to 4 separate donors could be deconvoluted. Quantitative linearity over 4 orders of magnitude and false-positive rates <1 in 85000 events were achieved. Eleven of 11 posttransplant clinical specimens from patients with hematological malignancies testing positive for residual cancer by conventional methods had detectable chimeric populations by smMIP, whereas 11 of 11 specimens testing negative by conventional methods were low-positive for chimerism by smMIP. CONCLUSIONS smMIPs are scalable to high sensitivity and large numbers of informative markers, enabling ultrasensitive chimerism detection for many clinical purposes.

Funder

National Cancer Institute

University of Washington

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3