Avoiding Pitfalls in Applying Prediction Models, As Illustrated by the Example of Prostate Cancer Diagnosis

Author:

Cammann Henning1,Jung Klaus23,Meyer Hellmuth-A24,Stephan Carsten23

Affiliation:

1. Institute of Medical Informatics and

2. Department of Urology, Charité – Universitätsmedizin Berlin, Berlin, Germany

3. Berlin Institute for Urologic Research, Berlin, Germany

4. Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany

Abstract

BACKGROUND The use of different mathematical models to support medical decisions is accompanied by increasing uncertainties when they are applied in practice. Using prostate cancer (PCa) risk models as an example, we recommend requirements for model development and draw attention to possible pitfalls so as to avoid the uncritical use of these models. CONTENT We conducted MEDLINE searches for applications of multivariate models supporting the prediction of PCa risk. We critically reviewed the methodological aspects of model development and the biological and analytical variability of the parameters used for model development. In addition, we reviewed the role of prostate biopsy as the gold standard for confirming diagnoses. In addition, we analyzed different methods of model evaluation with respect to their application to different populations. When using models in clinical practice, one must validate the results with a population from the application field. Typical model characteristics (such as discrimination performance and calibration) and methods for assessing the risk of a decision should be used when evaluating a model's output. The choice of a model should be based on these results and on the practicality of its use. SUMMARY To avoid possible errors in applying prediction models (the risk of PCa, for example) requires examining the possible pitfalls of the underlying mathematical models in the context of the individual case. The main tools for this purpose are discrimination, calibration, and decision curve analysis.

Funder

Berliner Sparkassenstiftung Medizin

Foundation of Urologic Research

Wilhelm Sander-Stiftung

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3