Exhaled Endogenous Particles Contain Lung Proteins

Author:

Bredberg Anna1,Gobom Johan2,Almstrand Ann-Charlotte1,Larsson Per1,Blennow Kaj2,Olin Anna-Carin1,Mirgorodskaya Ekaterina1

Affiliation:

1. Occupational and Environmental Medicine, University of Gothenburg, Gothenburg, Sweden

2. Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden

Abstract

Abstract BACKGROUND We recently developed a novel, noninvasive method for sampling nonvolatile material from the distal airways. The method is based on the collection of endogenous particles in exhaled air (PEx). The aim of this study was to characterize the protein composition of PEx and to verify that the origin of PEx is respiratory tract lining fluid (RTLF). METHOD Healthy individuals exhaled into the sampling device, which collected PEx onto a silicon plate inside a 3-stage impactor. After their extraction from the plates, PEx proteins were separated by SDS-PAGE and then analyzed by LC-MS. Proteins were identified by searching the International Protein Index human database with the Mascot search engine. RESULTS Analysis of the pooled samples identified 124 proteins. A comparison of the identified PEx proteins with published bronchoalveolar lavage (BAL) proteomic data showed a high degree of overlap, with 103 (83%) of the PEx proteins having previously been detected in BAL. The relative abundances of the proteins were estimated according to the Mascot exponentially modified protein abundance index protocol and were in agreement with the expected protein composition of RTLF. No amylase was detected, indicating the absence of saliva protein contamination with our sampling technique. CONCLUSIONS Our data strongly support that PEx originate from RTLF and reflect the composition of undiluted RTLF.

Funder

Hjärt-Lungfonden

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3