Affiliation:
1. University of Milano Bicocca, Milano, Italy
2. DiaSorin SpA, Saluggia (VC), Italy
3. Dana Farber-Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA
Abstract
Abstract
Background: Aberrant promoter methylation is a major mechanism for silencing tumor suppressor genes in cancer. Detection of hypermethylation is used as a molecular marker for early cancer diagnosis, as a prognostic index, or to define therapeutic targets for reversion of aberrant methylation. We report on a novel signal generation technology for real-time PCR to detect gene promoter methylation.
Methods: FLAG (fluorescent amplicon generation) is a homogeneous signal generation technology based on the exceptionally thermostable endonuclease PspGI. FLAG provides real-time signal generation during PCR by PspGI-mediated cleavage of quenched fluorophores at the 5′ end of double-stranded PCR products. Methylation-specific PCR (MSP) applied on bisulfite-treated DNA was adapted to a real-time format (methylation-specific FLAG; MS-FLAG) for quantifying methylation in the promoter of CDKN2A (p16), GATA5, and RASSF1. We validated MS-FLAG on plasmids and genomic DNA with known methylation status and applied it to detection of methylation in a limited number of clinical samples. We also conducted bisulfite sequencing on these samples.
Results: Real-time PCR results obtained via MS-FLAG agreed with results obtained via conventional, gel-based MSP. The new technology showed high specificity, sensitivity (2–3 plasmid copies), and selectivity (0.01% of methylated DNA) on control samples. It enabled correct prediction of the methylation status of all 3 gene promoters in 21 lung adenocarcinoma samples, as confirmed by bisulfite sequencing. We also developed a multiplex MS-FLAG assay for GATA5 and RASSF1 promoters.
Conclusion: MS-FLAG provides a new, quantitative, high-throughput method for detecting gene promoter methylation and is a convenient alternative to agarose gel-based MSP for screening methylation. In addition to methylation, FLAG-based real-time signal generation may have broad applications in DNA diagnostics.
Funder
National Institutes of Health
Publisher
Oxford University Press (OUP)
Subject
Biochemistry, medical,Clinical Biochemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献