High Diagnostic Accuracy of Antigen Microarray for Sensitive Detection of Hepatitis C Virus Infection

Author:

Kwon Jung-ah12,Lee Hyeseon342,Lee Kap N o1,Chae Kwangchun5,Lee Seram56,Lee Dong-ki7,Kim Soyoun56

Affiliation:

1. Diagnosis Division, Kuro Korea University Hospital, Seoul, Korea

2. These authors contributed equally to this work

3. Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang, Korea

4. Department of Statistics, Kyungpook National University, Daegu, Korea

5. Chemistry Department, Dongguk University, Seoul, Korea

6. NanoBio Lab, National Research Laboratory, Ministry of Science and Technology, Korea

7. Department of Chemistry and BK School of Molecular Science, Pohang University of Science and Technology, Pohang, Korea

Abstract

Abstract Background: Hepatitis C virus (HCV) can be transmitted through blood transfusion. Screening ELISA, the most widely used method for HCV diagnosis, sometimes yields false-positive and false-negative results, so a confirmatory test is used. This secondary testing is labor-intensive and expensive, and thus is impractical for massive blood bank screening. Therefore, a new massive screening method with high accuracy is needed for sensitive and specific detection of HCV. Methods: With sol-gel material, we designed novel antigen microarray in 96-well plates for HCV detection. Each individual well was spotted with 4 different HCV antigens. We used this new system to test 154 patient serum samples previously tested for HCV by ELISA (87 HCV positive and 67 HCV negative) (HCV EIA3.0, ABBOTT). We assessed the detection limit of our microarray system with the use of serial 10-fold dilutions of an HCV-positive sample. Results: Our microarray assay was reproducible and displayed higher diagnostic accuracy (specificity) (98.78%) than did the ELISA (81.71%). Our method yielded significantly fewer false-positive results than did the ELISA. The detection limit of our assay was 1000 times more sensitive than that of the ELISA. In addition, we found this novel assay technology to be compatible with the currently employed automated methods used for ELISA. Conclusion: We successfully applied the sol-gel–based protein microarray technology to a screening assay for HCV diagnosis with confirmatory test-level accuracy. This new, inexpensive method will improve the specificity and sensitivity of massive sample diagnosis.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3