Progress toward Ultrafast DNA Sequencing Using Solid-State Nanopores

Author:

Soni Gautam V1,Meller Amit

Affiliation:

1. Department of Biomedical Engineering, Boston University, Boston, MA

Abstract

Abstract Background: Measurements of the ionic current flowing through nanometer-scale pores (nanopores) have been used to analyze single DNA and RNA molecules, with the ultimate goal of achieving ultrafast DNA sequencing. However, attempts at purely electronic measurements have not achieved the signal contrast required for single nucleotide differentiation. In this report we propose a novel method of optical detection of DNA sequence translocating through a nanopore. Methods: Each base of the target DNA sequence is 1st mapped onto a 2-unit code, 2 10-bp nucleotide sequence, by biochemical conversion into Designed DNA Polymers. These 2-unit codes are then hybridized to complementary, fluorescently labeled, and self-quenching molecular beacons. As the molecular beacons are sequentially unzipped during translocation through a <2-nm-wide nanopore, their fluorescent tags are unquenched and are detected by a custom-built dual-color total internal reflection fluorescence (TIRF) microscope. The 2-color optical signal is then correlated to the target DNA sequence. Results: A dual-color TIRFM microscope with single-molecule resolution was constructed, and controlled fabrication of 1-dimensional and 2-dimensional arrays of solid-state nanopores was performed. A nanofluidic cell assembly was constructed for TIRF-based optical detection of voltage-driven DNA translocation through a nanopore. Conclusions: We present a novel nanopore-based DNA sequencing technique that uses an optical readout of DNA translocating unzipping through a nanopore. Our technique offers better single nucleotide differentiation in sequence readout, as well as the possibility of large-scale parallelism using nanopore arrays.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3