Influence of Urinary Stones on the Composition of a 24-Hour Urine Sample

Author:

Laube Norbert1,Pullmann Michael2,Hergarten Stefan2,Hesse Albrecht1

Affiliation:

1. Division of Experimental Urology, Department of Urology, and

2. Geodynamics and Physics of the Lithosphere, University of Bonn, D-53105 Bonn, Germany

Abstract

Abstract Background: It can be assumed that stones in the urinary tract continuously increase in size by incorporating material from urine. Consequently, urine will exhibit depleted concentrations of lithogenic constituents when urinary stones are present in the patient’s urinary tract. Methods: To calculate the influence of the depletion effect, we considered two different models of stone growth. In the first model, the increase in stone size depends only on the urinary concentration of a lithogenic substance; the second model also considers the surface area of the growing stone. The case of only one kidney being affected by stone formation is considered separately. We discuss example calculations involving the formation of calcium oxalate. Results: The calculated depletion effects are of a nonnegligible order of magnitude. Assuming both a measured oxalate concentration of, e.g., 0.37 mmol/L and a reasonable in vivo stone growing rate of 10 mm3/day, a relative underestimation of the real “in situ” oxalate concentration between ∼21% (model 1) and ∼42% (model 2) occurs. The depletion effect increases markedly with increasing stone growth rate. Conclusions: Metabolic status can be evaluated correctly only in patients who have been declared “stone-free”, e.g., after stone removal. Because the expected stone-related depletion effect in most cases is of high clinical relevance, we recommend estimating the effect of the order of magnitude of the depletion on actual urinary composition.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3