Application of Optical Trapping for Cells Grown on Plates: Optimization of PCR and Fidelity of DNA Sequencing of p53 Gene from a Single Cell

Author:

Gale James M1,Romero Christopher P1,Tafoya Gregory B1,Conia Jérôme2

Affiliation:

1. Department of Cell Biology and Physiology, Steve Schiff Center for Skin Cancer University of New Mexico Health Sciences Center, Albuquerque, NM 87131

2. Cell Robotics International, Inc., 2715 Broadbent Pkwy NE, Albuquerque, NM 87107

Abstract

Abstract Background: Optical trapping has traditionally been used to visually select and isolate nonadherent cells grown in suspension because cells grown in monolayers will rapidly reattach to surfaces if suspended in solution. We explored methods to slow cell reattachment that are also compatible with high-fidelity PCR. Methods: Using HeLa cells grown on plates and suspended after trypsinization, we measured the efficiency of capture by retention and movement of the cell by the laser. Success for removing a captured cell by pipette was determined by PCR amplification of the 5S rRNA gene. After optimizing PCR amplification of a 2049-bp region of the p53 gene, we determined PCR fidelity by DNA sequencing. Results: Addition of bovine serum albumin to suspended cells slowed reattachment from seconds to minutes and allowed efficient trapping. The success rate of removing a cell from the trap by pipette to a PCR tube was 91.5%. The 5S PCR assay also revealed that DNA and RNA that copurify with polymerases could give false-positive results. Sequence analysis of four clones derived from a single cell showed only three polymerase errors in 7200 bp of sequence read and revealed difficulties in reading the correct number in a run of 16 A:T. Comparison of the HeLa and wild-type human sequences revealed several previously unreported base differences and an (A:T)n length polymorphism in p53 introns. Conclusions: These results represent the first use of optical trapping on adherent cells and demonstrate the high accuracy of DNA sequencing that can be achieved from a single cell.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3