REGULARITIES OF THE RETAINED AUSTENITE FORMATION IN THE COMPLEXLY ALLOYED STEEL (OVERVIEW)

Author:

Bobyr S. V.1ORCID,Parusov E. V.1ORCID,Levchenko G. V.1ORCID,Golubenko T. М.1ORCID,Chuiko I. М.1ORCID

Affiliation:

1. Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine

Abstract

The purpose of the analysis is to determine the modes of heat treatment that affect the quality parameters of complex alloy steels. Steels, which contain chromium and significant amounts of other alloying elements (nickel, vanadium, molybdenum, etc.) are used for the production of the different metal products, which are working in hard operating conditions: rolling rolls, power equipment parts, piercing plug, etc. Retained austenite is always present in such steels and affects the properties of the final metal products. Should be include the following factors that increase the amount of retained austenite in complexly alloy steels: thermal stabilization of the austenite; redistribution of the carbon between the α-phase and austenite during cooling in the temperature range of the intermediate or bainitic transformation or during isothermal holding slightly above the Мp point; hardening from the intercritical temperature range; changing the cooling rate; the actual content of carbon and alloying elements; changing in the austenitization temperature, isothermal holding and heating temperature during hardening. The indicated factors should be considered during determining the final parameters of the heat treatment mode to control the amount of retained austenite in complexly alloy steels. Isothermal hardening from the γ-α-area is proposed to obtain a multiphase structure of 38HN3MFA steel. Using of the cryogenic treatment for the strengthening mode of the 38HN3MFA steel promotes the transformation of retained austenite into martensite and significantly increases the microhardness of the structural components of the steel.

Publisher

Institute of Ferrous Metallurgy Z.I. Nekrasova of the National Academy of Sciences of Ukraine

Reference18 articles.

1. Gulyayev A.P. (1977). Termicheskaya obrabotka stali [Heat treatment of steel], Moskva: Metallurgiya, 1977. 647 p. [In Russian].

2. Zhang K., Zhang M., Guo Z., Chen N., Rong Yo. (2011). A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Materials Science and Engineering A, 2011, 528, 8486–8491. https://doi.org/10.1016/j.msea.2011.07.049

3. Schastlivtsev V.M., Kaletina YU.V., Fokina Ye.A., Kaletin A.YU. (2014). Vliyaniye skorosti okhlazhdeniya na kolichestvo ostatochnogo austenita pri beynitnom prevrashchenii [Effect of cooling rate on the amount of retained austenite upon bainitic transformation]. Fizika metallov i metallovedeniye [The Physics of Metals and Metallography], 2014, Vol. 115, 10, 1052-1063. https://doi.org/10.7868/S0015323014100143 [In Russian].

4. Sadovskiy V.D., Fokina Ye.A. (1986). Ostatochnyy austenit v zakalennoy stali [Retained austenite in hardened steel]. Moskva: Nauka, 1986, 113 p. [In Russian].

5. Mirzayeva D.A., Sozykina S.A., Makovetskiy A.N., Krasnotalova A.O., Yusupova L.I. (2019). Dilatometricheskoye issledovaniye obrazovaniya martensita i effektov stabilizatsii austenita v vysokokhromistoy trubnoy stali [Dilatometric study of the formation of martensite and of the effects of stabilization of austenite in high-chromium pipe steel]. Fizika metallov i metallovedeniye [The Physics of Metals and Metallography], 2019, Vol. 120, 8, 840–844. https://doi.org/10.1134/S0031918X19060085 [In Russian].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3