Genomic Prediction of Locoregional Recurrence After Mastectomy in Breast Cancer

Author:

Cheng Skye H.1,Horng Cheng-Fang1,West Mike1,Huang Erich1,Pittman Jennifer1,Tsou Mei-Hua1,Dressman Holly1,Chen Chii-Ming1,Tsai Stella Y.1,Jian James J.1,Liu Mei-Chin1,Nevins Joseph R.1,Huang Andrew T.1

Affiliation:

1. From the Departments of Radiation Oncology, Research, Laboratory and Pathology, Surgery and Medical Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan; Departments of Radiation Oncology, Surgery, Medicine, and Biostatistics and Bioinformatics, Duke University Medical Center; and the Institute of Statistics and Decision Sciences, and the Institute for Genome Sciences and Policy, Duke University, Durham, NC

Abstract

Purpose This study aims to explore gene expression profiles that are associated with locoregional (LR) recurrence in breast cancer after mastectomy. Patients and Methods A total of 94 breast cancer patients who underwent mastectomy between 1990 and 2001 and had DNA microarray study on the primary tumor tissues were chosen for this study. Eligible patient should have no evidence of LR recurrence without postmastectomy radiotherapy (PMRT) after a minimum of 3-year follow-up (n = 67) and any LR recurrence (n = 27). They were randomly split into training and validation sets. Statistical classification tree analysis and proportional hazards models were developed to identify and validate gene expression profiles that relate to LR recurrence. Results Our study demonstrates two sets of gene expression profiles (one with 258 genes and the other 34 genes) to be of predictive value with respect to LR recurrence. The overall accuracy of the prediction tree model in validation sets is estimated 75% to 78%. Of patients in validation data set, the 3-year LR control rate with predictive index more than 0.8 derived from 34-gene prediction models is 91%, and predictive index 0.8 or less is 40% (P = .008). Multivariate analysis of all patients reveals that estrogen receptor and genomic predictive index are independent prognostic factors that affect LR control. Conclusion Using gene expression profiles to develop prediction tree models effectively identifies breast cancer patients who are at higher risk for LR recurrence. This gene expression–based predictive index can be used to select patients for PMRT.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3