Identification and Validation of Novel Therapeutic Targets for Multiple Myeloma

Author:

Hideshima Teru1,Chauhan Dharminder1,Richardson Paul1,Anderson Kenneth C.1

Affiliation:

1. From the Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA

Abstract

In vitro and in vivo models have been developed that have allowed for delineation of mechanisms of multiple myeloma (MM) cell homing to bone marrow (BM); tumor cell adhesion to extracellular matrix proteins and BM stromal cells; and cytokine-mediated growth, survival, drug resistance, and migration within the BM milieu. Delineation of the signaling cascades mediating these sequelae has identified multiple novel therapeutic targets in the tumor cell and its BM microenvironment. Importantly, novel therapies targeting the tumor cell and the BM, as well as those targeting the tumor cell or BM alone, can overcome the growth, survival, conventional drug resistance, and migration of MM cells bound to BM using both in vitro and in vivo severe combined immunodeficiency mouse models of human MM. These studies have translated rapidly from the bench to the bedside in derived clinical trials, and have already led to the United States Food and Drug Administration approval of the novel proteasome inhibitor bortezomib for treatment of relapsed/refractory MM. Novel agents will need to be combined to enhance cytotoxicity, avoid development of drug resistance, and allow for use of lower doses in combination therapies. Genomics, proteomics, and cell signaling studies have helped to identify in vivo mechanisms of sensitivity versus resistance to novel therapies, as well as aiding in the rational application of combination therapies. These studies have therefore provided the framework for a new treatment paradigm targeting the MM cell in its BM milieu to overcome drug resistance and improve patient outcome in MM.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3