Overcoming Resistance to Interferon-Induced Apoptosis of Renal Carcinoma and Melanoma Cells by DNA Demethylation

Author:

Reu Frederic J.1,Bae Soo In1,Cherkassky Leonid1,Leaman Douglas W.1,Lindner Daniel1,Beaulieu Normand1,MacLeod A. Robert1,Borden Ernest C.1

Affiliation:

1. From the Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland; University of Toledo, Toledo, OH; MethylGene Inc, Québec, Canada.

Abstract

Epigenetic editing of gene expression by aberrant methylation of DNA may help tumor cells escape attack from the innate and acquired immune systems. Resistance to antiproliferative effects and apoptosis induction by interferons (IFNs) was postulated to result from silencing of IFN response genes by promoter hypermethylation. Treatment of human ACHN renal cell carcinoma (RCC) and A375 melanoma cells with the DNA demethylating nucleoside analog 5-AZA-2′-deoxycytidine (5-AZA-dC) synergistically augmented antiproliferative effects of IFN- alpha (α) 2 and IFN-beta (β). Either 5-AZA-dC or an antisense to DNA methyltransferase 1 (DNMT1) overcame resistance to apoptosis induction by IFNs with up to 85% apoptotic cells resulting from the combinations. No similar potentiation occurred in normal kidney epithelial cells. IFN response genes were augmented more than 10 times in expression by 5-AZA-dC. Demethylation by 5-AZA-dC of the promoter of the prototypic, apoptosis-associated IFN response gene XAF1 was confirmed by methylation-specific polymerase chain reaction. siRNA to XAF1 inhibited IFN-induced apoptosis; conversely, overexpression of XAF1 overcame resistance to apoptosis induction by IFN-β. As occurred with apoptosis-resistant melanoma cells in vitro, tumor growth inhibition in the nude mouse of human A375 melanoma xenografts resulted from treatment with 5-AZA-dC in combination with IFN-β, an effect not resulting from either single agent. The importance of epigenetic remodeling of expression of immune-modifying genes in tumor cells was further suggested by identifying reactivation of the cancer-testis antigens MAGE and RAGE in ACHN cells after DNMT1 depletion. Thus, inhibitors of DNMT1 may have clinical relevance for immune modulation by augmentation of cytokine effects and/or expression of tumor-associated antigens.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3