Mapping Molecular Networks Using Proteomics: A Vision for Patient-Tailored Combination Therapy

Author:

Petricoin Emanuel F.1,Bichsel Verena E.1,Calvert Valerie S.1,Espina Virginia1,Winters Mary1,Young Lynn1,Belluco Claudio1,Trock Bruce J.1,Lippman Marc1,Fishman David A.1,Sgroi Dennis C.1,Munson Peter J.1,Esserman Laura J.1,Liotta Lance A.1

Affiliation:

1. From the US Food and Drug Administration (FDA) –National Cancer Institute (NCI) Clinical Proteomics Program, Office of Cellular and Gene Therapy, Center for Biologics Evaluation and Research (CBER), FDA; FDA-NCI Clinical Proteomics Program, Laboratory of Pathology, NCI, Center for Cancer Research (CCR)/National Institutes of Health (NIH); Biostatistics Section, Mathematical and Statistical Computing Laboratory, Center for Information Technology, NIH, Bethesda; Johns Hopkins University, Department of...

Abstract

Mapping tumor cell protein networks in vivo will be critical for realizing the promise of patient-tailored molecular therapy. Cancer can be defined as a dysregulation or hyperactivity in the network of intracellular and extracellular signaling cascades. These protein signaling circuits are the ultimate targets of molecular therapy. Each patient's tumor may be driven by a distinct series of molecular pathogenic defects. Thus, for any single molecular targeted therapy, only a subset of cancer patients may respond. Individualization of therapy, which tailors a therapeutic regimen to a tumor molecular portrait, may be the solution to this dilemma. Until recently, the field lacked the technology for molecular profiling at the genomic and proteomic level. Emerging proteomic technology, used concomitantly with genomic analysis, promises to meet this need and bring to reality the clinical adoption of molecular stratification. The activation state of kinase-driven signal networks contains important information relative to cancer pathogenesis and therapeutic target selection. Proteomic technology offers a means to quantify the state of kinase pathways, and provides post-translational phosphorylation data not obtainable by gene arrays. Case studies using clinical research specimens are provided to show the feasibility of generating the critical information needed to individualize therapy. Such technology can reveal potential new pathway interconnections, including differences between primary and metastatic lesions. We provide a vision for individualized combinatorial therapy based on proteomic mapping of phosphorylation end points in clinical tissue material.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3