Serum Proteomic Fingerprinting Discriminates Between Clinical Stages and Predicts Disease Progression in Melanoma Patients

Author:

Mian Shahid1,Ugurel Selma1,Parkinson Erika1,Schlenzka Iris1,Dryden Ian1,Lancashire Lee1,Ball Graham1,Creaser Colin1,Rees Robert1,Schadendorf Dirk1

Affiliation:

1. From the Interdisciplinary Biomedical Research Centre, School of Science, Nottingham Trent University, Clifton Lane, Clifton; School of Mathematical Sciences, University of Nottingham, University Park, Nottingham; Department of Animal Physiology, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom; Skin Cancer Unit, German Cancer Research Center, Heidelberg; Department of Dermatology, University Hospital, Mannheim, Germany

Abstract

PurposeCurrently known serum biomarkers do not predict clinical outcome in melanoma. S100-β is widely established as a reliable prognostic indicator in patients with advanced metastatic disease but is of limited predictive value in tumor-free patients. This study was aimed to determine whether molecular profiling of the serum proteome could discriminate between early- and late-stage melanoma and predict disease progression.Patients and MethodsTwo hundred five serum samples from 101 early-stage (American Joint Committee on Cancer [AJCC] stage I) and 104 advanced stage (AJCC stage IV) melanoma patients were analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (ToF; MALDI-ToF) mass spectrometry utilizing protein chip technology and artificial neural networks (ANN). Serum samples from 55 additional patients after complete dissection of regional lymph node metastases (AJCC stage III), with 28 of 55 patients relapsing within the first year of follow-up, were analyzed in an attempt to predict disease recurrence. Serum S100-β was measured using a sandwich immunoluminometric assay.ResultsAnalysis of 205 stage I/IV serum samples, utilizing a training set of 94 of 205 and a test set of 15 of 205 samples for 32 different ANN models, revealed correct stage assignment in 84 (88%) of 96 of a blind set of 96 of 205 serum samples. Forty-four (80%) of 55 stage III serum samples could be correctly assigned as progressors or nonprogressors using random sample cross-validation statistical methodologies. Twenty-three (82%) of 28 stage III progressors were correctly identified by MALDI-ToF combined with ANN, whereas only six (21%) of 28 could be detected by S100-β.ConclusionValidation of these findings may enable proteomic profiling to become a valuable tool for identifying high-risk melanoma patients eligible for adjuvant therapeutic interventions.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3