A new model using artificial intelligence to predict recurrence after surgical resection of stage I-II non-small cell lung cancer.

Author:

Lui Natalie1,Wei Nien2,Trope Winston1,Nesbit Shannon1,Bhandari Prasha1,Lee Chin-Hui3,Hu Hu3,Guo H. Henry1,Liou Douglas Z.1,Shrager Joseph B.1,Backhus Leah Monique1,Berry Mark F.1,Yang Eric1

Affiliation:

1. Stanford University, Stanford, CA;

2. Auspex Diagnostics, Warren, NJ;

3. Georgia Institute of Technology, Atlanta, GA;

Abstract

8537 Background: Five-year survival for stage I-II lung cancer is quite low even after complete surgical resection. Current guidelines recommend adjuvant treatment only for selected patients with stage II or higher disease. A prediction model that identifies patients at high risk of recurrence who may benefit from adjuvant treatment is greatly needed. Many existing prediction models include a small number of genes that were found to be significant in previous studies. We propose using artificial intelligence to analyze a microarray of > 20,000 well-annotated genes to create a model that predicts recurrence after surgical resection of stage I-II lung cancer. Methods: We identified 275 patients who underwent surgical resection for pathologic stage I-II lung adenocarcinoma or squamous cell carcinoma from 2009 to 2019 in our institution’s prospective surgical database. We excluded patients who had follow up time less than 3 years or received adjuvant therapy and had not had a recurrence, as well as patients with missing specimen blocks. Patient characteristics and recurrence information were obtained from chart review. The patients were divided into training (192 patients) and validation (83 patients) cohorts, and the recurrence status for the validation cohort was initially blinded. Gene expression levels were generated using Clariom S human array (ThermoFisher) from 10um sections cut from the formalin-fixed, paraffin-embedded surgical specimen blocks. The artificial intelligence algorithm Support Vector Machine (SVM) was used to create a prediction model for recurrence using the gene expression and recurrence status of the patients in the training cohort. The model was then tested on the validation cohort using Kaplan-Meier analysis and the area under the receiver operator curve (AUROC). Results: The recurrence prediction model separated the validation cohort into 15 (18.1%) patients in the high-risk group and 68 (81.9%) patients in the low-risk group. Kaplan-Meier analysis showed the five-year disease-free survival was significantly higher in the low-risk group compared to the high-risk group (86 vs. 50%, HR = 4.41, p = 0.0025). The AUROC for predicting recurrence was 0.744. Conclusions: Our model uses artificial intelligence to successfully predict recurrence after surgical resection for stage I-II non-small cell lung cancer. With an AUROC of 0.744, our model outperforms previously described models with AUROC up to 0.6. Our model separates patients into high-risk and low-risk groups, which will make management decisions clearer compared to other models that also include an intermediate-risk group. Patients in the low-risk group had 86% five-year disease-free survival; patients in the high-risk group had 50% five-year disease-free survival and may benefit from increased postoperative surveillance or adjuvant therapy.

Funder

Auspex Diagnostics

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3